MT-1 Solution

Semester IV, March 2020

Paper Code : ETEC 206, Paper : Network Analysis and Synthesis

Time : 1.5 Hours
MM: 30
Note: Attempt Q.No 1 which is compulsory and any two more questions from the remaining.

Q1(a) Check whether the given system is linear or not.

$$
\mathrm{Y}[\mathrm{n}]=\mathrm{x}[\mathrm{n}+1]-\mathrm{x}[\mathrm{n}-1]
$$

Q1(b) Two ramp functions are given by f 19 t$)=\mathrm{mtu}(\mathrm{t})$ and $\mathrm{f} 2=\mathrm{m}(\mathrm{t}-\mathrm{a}) \mathrm{u}(\mathrm{t}-\mathrm{a})$ where m 1 and m 2 are the slopes (+ve) and $\mathrm{m} 1>\mathrm{m} 2$. Draw final wave of these two functions

Q1(c) ramp step $u(t-5)$ is applied to a series $R L$ network. Calculate the current $i(t)$, assume $R=1$ ohm and $\mathrm{L}=1 \mathrm{H}$.

Q1(d) A switch S has been in contact with point 1 for long time, it is moved to position 2 at $\mathrm{t}=0$. If at $t=0+$, the voltage across the inductor is 120 V . Find the value of the resistance R .

Q1(e) Find the value of $\mathrm{F}(0+)$, if $\mathrm{F}(\mathrm{s})=\frac{5 s^{3}-1600}{s\left(s^{3}+18 s^{2}+90 s+800\right)}$
Q2(a) Determine the Laplace transform of the following periodic waveform.

Q3(a) Find $i(t)$ following switching of K at $t=0 \mathrm{~min}$ the circuit below from A to B

Q3(b) A resistance R and 5 uF capacitor are connected in series across 100 Vdc supply. Calculate the value of R such that the voltage across the capacitor below 50 V in 5 seconds after the circuit is switched on. 5

Q4(a) In the circuit shown below, steady state is reached with the switch in position " a ". At $t=0$, switching is done to "b" such that the circuit goes to discharging mode. Obtain the expression for the current $i(t)$.

Q4(b) Assuming the initial current to be 2A through the inductor, find $\mathrm{V} 0(\mathrm{t})$ in the figure below. 5

Solution: NAS MT-1 March 2020

Q1(a) Check whether the given system is linear or not.

$$
Y[n]=x[n+1]-x[n-1]
$$

Solution:
We will check the system for the homogeneity and additivity
a. Checking for Homogeneity

Comparing $\mathrm{Y}[\mathrm{n}]$ and $\mathrm{Z}[\mathrm{n}]$ we find that the system is Homogeneous
b. Checking for additivity:

The response will be:
$\mathrm{Y}[\mathrm{n}]=\mathrm{y} 1[\mathrm{n}]+\mathrm{y} 2[\mathrm{n}]$

$$
\begin{equation*}
=x 1[n+]-x 1[n-1]+x 2[n+]-x 2[n-1] \tag{1}
\end{equation*}
$$

Again:

Comparing equation (1) and eq (2)
It is verified that the system satisfies both homogeneity and additivity we can say that the system is linear.

Q1(b) Two ramp functions are given by $f 1(t)=m t u(t)$ and $f 2=m(t-a) u(t-a)$ where $m 1$ and $m 2$ are the slopes (+ve) and m1>m2. Draw final wave by adding of these two functions

Q1(c) A unit step $u(t-5)$ is applied to a series RL network. Calculate the current $i(t)$, assume $R=1 \mathrm{hm}$ and $\mathrm{L}=1 \mathrm{H}$.

Input is shifted unit step
So, the initial current through the inductor:
$\mathrm{i}\left(0^{-}\right)=\mathrm{i}\left(0^{+}\right)=0$
$\operatorname{Ri}(\mathrm{t})+\mathrm{Ldi} / \mathrm{dt}=\mathrm{u}(\mathrm{t}-5)$
$\operatorname{RI}(\mathrm{s})+\operatorname{LsI}(\mathrm{s})-\operatorname{Li}(0)=\mathrm{e}^{-5 s} / \mathrm{s}$
$\mathrm{I}(\mathrm{s})(\mathrm{s}+1)=\mathrm{e}^{-5 \mathrm{~s}} / \mathrm{s}$
$I(s)=e^{-5 s} / s(s+1)=A / s+B /(s+1)$
$A=1, B=-e^{5}$
$I(s)=\left[1 / s-e^{5} /(s+1)\right]$
Taking inverse Laplace we get
$\mathrm{i}(\mathrm{t}) \quad=\left[\mathrm{u}(\mathrm{t})-\mathrm{e}^{-(\mathrm{t}-5)} \mathrm{u}(\mathrm{t})\right]$

$$
=\left(1-\mathrm{e}^{-(\mathrm{t}-5)}\right) \mathrm{u}(\mathrm{t})
$$

Q1(d) A switch S has been in contact with point 1 for long time, it is moved to position 2 at $t=0$. If at $t=0+$, the voltage across the inductor is 120 V . Find the value of the resistance R.

Solution: When the switch is at position 1 for a long time, the inductor acts as short so the final steady state current is $\mathrm{i}(\infty)=\mathrm{V} / \mathrm{R}=120 /(20+40)=120 / 60=2 \mathrm{~A}$

When the switch is thrown to position 2,

$$
L \frac{d i}{d t}=(60+R) i
$$

$$
\mathrm{V}_{\mathrm{L}}=2(60+\mathrm{R})
$$

$$
120=120+2 R
$$

Therefore

$$
\mathrm{R}=0
$$

Q1(e) Find the value of $f(0+)$, if $F(s)=\frac{5 s^{3}-1600}{s\left(s^{3}+18 s^{2}+90 s+800\right)}$
Solution Applying the final value theorem $f(t)$ at

$$
\begin{aligned}
\operatorname{Lim}\left(\mathrm{t} \rightarrow 0^{+}\right) & =\operatorname{Lim} \mathrm{s} \rightarrow \infty[\mathrm{sF}(\mathrm{~s})] \\
& =\frac{s\left(5 s^{3}-1600\right)}{s\left(s^{3}+18 s^{2}+90 s+800\right)} \\
\operatorname{Lim} s \rightarrow & \infty \frac{s^{3}\left(5-1600 / s^{3}\right)}{s^{3}\left(1+\frac{18}{s}+\frac{90}{s^{2}}+800 / s^{3}\right)} \\
& =\frac{(5-0)}{(1+0+0+0)} \\
\mathrm{f}\left(0^{+}\right) & =5
\end{aligned}
$$

Q2(a) Determine the Laplace transform of the following periodic waveform.

Solution Laplace of a periodic waveform is given as

$$
\begin{aligned}
& f(t)=\frac{2}{T}\left(t-\frac{T}{2}\right)[u(t)-u(t-T)] \\
& =-\frac{2}{T}\left(t-\frac{T}{2}\right) u(t)+\frac{2}{T}\left[(t-T)+\frac{T}{2}\right] u(t-T) \\
& =-\frac{2}{T}\left[\frac{1}{s^{2}}-\frac{T}{2 s}\right]+\left[\frac{T}{2 s^{2}}+\frac{1}{s}\right] e^{-s T} \\
& \frac{2}{T s}\left[\frac{T}{2}\left(1+e^{-T s}\right)-\frac{1}{s}\left(1-e^{-T s}\right)\right] \\
& \mathrm{F}(\mathrm{~s})=£ f(t)=\frac{F(s)}{1-e^{-T s}} \\
& =\frac{1}{1-e^{-T s}} \frac{2}{T s}\left[\frac{T}{2}\left(\frac{1+e^{-T s}}{1-e^{-T s}}\right)-\frac{1}{s}\right] \\
& =\frac{2}{T s}\left[\frac{T}{2} \operatorname{coth}\left(\frac{T s}{2}\right)-\frac{1}{s}\right]
\end{aligned}
$$

Applying the Nodal method
For zero intitial condition we can convert the circuit to s domain
$\delta(t)=\frac{v_{c}}{R}+\frac{v_{c}}{X c}+\frac{v_{c}}{Z_{L}}$
Taking Laplace:
$1=\frac{V c(s)}{1}+\frac{V c(s)}{\frac{1}{s}}+\frac{V(s)}{2+\frac{s}{2}}$
$1=V c(s)\left[1+s+\frac{2}{s+4}\right]$
$1=V c(s)\left[\frac{s^{2}+5 s+6}{s+4}\right]$
$V c(s)=\frac{s+4}{s^{2}+5 s+6}$
$V c(s)=\frac{s+4}{(s+3)(s+2)}=\frac{A}{s+3}+\frac{B}{s+2}$
Solving $\mathrm{A}=-1 ; \mathrm{B}=2$

$$
\mathrm{V}(\mathrm{~s})=\frac{-1}{s+3}+\frac{2}{s+2}
$$

Taking inverse Laplace
$V c(t)=-e^{-3 t}+2 e^{-2 t}$
To find current through the inductor
$I_{L}(s)=\frac{V c(s)}{Z_{L}(s)}=\frac{\frac{s+4}{(s+3)(s+2)}}{\frac{s+4}{2}}=\frac{2}{(s+3)(s+2)}=\frac{A}{s+3}+\frac{B}{s+2}$
Solving for A and B
$\mathrm{A}=-2 ; \quad \mathrm{B}=2$
$I_{L}(s)=\frac{-2}{s+3}+\frac{2}{s+2}$
Taking inverse Laplace
$I_{L}(t)=2\left(e^{-2 t}-e^{-3 t}\right) A m p$
Q3(a) Find $i(t)$ following switching of K at $t=0$ in the circuit below from position A to $B \quad 5$

Ans: Assuming the circuit has reached steady state before switching to B. At steady state $i L(t)=V / R$ $=12 / 4=3 \mathrm{~A}$

When the switch is at B
$4 \mathrm{di} / \mathrm{dt}+4 \mathrm{i}=24$
Taking Laplace

$$
\begin{aligned}
& 4 \mathrm{sI}(\mathrm{~s})-\mathrm{Li}(0-)+4 \mathrm{I}(\mathrm{~s})=24 / \mathrm{s} \\
& 4 \mathrm{sI}(\mathrm{~s})+4 \mathrm{I}(\mathrm{~s})-4 \times 3=24 / \mathrm{s} \\
& 4 \mathrm{sI}(\mathrm{~s})+4 \mathrm{I}(\mathrm{~s})=24 / \mathrm{s}+12 \\
& I(s)=\frac{12\left(\frac{2}{s}+1\right)}{4(s+1)} \\
& I(s)=\frac{(6+3 s)}{s(s+1)}=\frac{A}{s}+\frac{B}{s+1}
\end{aligned}
$$

Solving for A and B we get
$A=6 ; B=-3$, putting these values back

$$
I(s)=\frac{6}{s}-\frac{3}{s+1}
$$

Applying inverse Laplace Transform we get

$$
\mathrm{i}(\mathrm{t})=6 \mathrm{u}(\mathrm{t})-3 \mathrm{e}^{-\mathrm{t}} \mathrm{u}(\mathrm{t})
$$

Q3(b) A resistance R and 5 uF capacitor are connected in series across 100 Vdc supply. Calculate the value of R such that the voltage across the capacitor below 50 V in 5 seconds after the circuit is switched on. 5

Solution:
Assuming the circuit was initially relaxed, so, $\mathrm{i}(0-)=\mathrm{i}(0+)=0$ and $\mathrm{Vc}(0-)=0 \mathrm{~V}$
At $\mathrm{t}>0$, applying KVL

$$
R i+\frac{1}{C} \int i . d t=100
$$

Applying Laplace transform

$$
\begin{aligned}
& R I(s)+\left[\frac{I(s)}{C s}+\frac{v(0)}{s}\right]=\frac{100}{s} \text { Current direction } \\
& I(s)\left(R+\frac{1}{C s}\right)+0=\frac{100}{s} \\
& \frac{R}{s} I(s)\left(s+\frac{1}{R C}\right)=\frac{100}{s} \\
& I(s)=\frac{100 s}{R s\left(s+\frac{1}{R C}\right)} \\
& I(s)=\frac{100}{R\left(s+\frac{1}{R C}\right)}
\end{aligned}
$$

Applying inverse Laplace

$$
\begin{aligned}
& i(t)=\frac{100}{R} e^{\frac{-t}{R C}} \\
& V_{c}=\frac{1}{C} \int i . d t
\end{aligned}
$$

$$
\begin{aligned}
& V_{c}=\frac{1}{C} \int \frac{100}{R} e^{-t / R C} d t \\
& V_{c}=\frac{100}{R C} \frac{e^{-t / R C}}{\frac{-1}{R C}}=100 e^{t / R C} \\
& \text { At } \mathrm{t}=5, \mathrm{Vc}=50 \text { therefore } \\
& 50=-100 e^{5 / R 5 \times 10^{-6}} \\
& e^{\frac{10^{6}}{R}}=\frac{50}{100}
\end{aligned}
$$

Taking log both sides

$$
\begin{aligned}
& -\frac{10^{6}}{R}=\log \left(\frac{1}{2}\right) \\
& -\frac{10^{6}}{R}=-0.6931 \\
& R=10^{6} / 0.693 \\
& R=10^{6} / 0.3 \\
& \mathrm{R}=1.44 \mathrm{M} \Omega
\end{aligned}
$$

Q4(a) In the circuit shown below, steady state is reached with the switch in position "a". At $\mathrm{t}=0$, switching is done to "b" such that the circuit goes to discharging mode. Obtain the expression for the current $\mathrm{i}(\mathrm{t})$.

Solution: At steady state, $\mathrm{i}(0-)=\mathrm{i}(0+)=1 / 1=1 \mathrm{~A}$
When the s / w is connected ay position 'b', applying KVL

$$
L \cdot \frac{d i}{d t}+\frac{1}{C} \int i d t=0
$$

Taking laplace transform

$$
s L I(s)-L i(0-)+\frac{I(s)}{C s}+\frac{Q}{s}=0
$$

$$
\begin{aligned}
& s I(s)+\frac{I(s)}{C s}-1+0=0 \\
& I(s)\left(s+\frac{1}{s}\right)=1 \\
& \frac{I(s)}{s}\left(s^{2}+1\right)=1 \\
& I(s)=\frac{s}{s^{2}+1}
\end{aligned}
$$

Applying the inverse Laplace transform we get

$$
i(t)=\cos (t)
$$

Q4(b) Assuming the initial current to be 2 A through the inductor, find $\mathrm{V} 0(\mathrm{t})$ in the figure below. 5

Using the Node analysis at node ' 0 '; the sum of all currents equals zero, therefore:

$$
\begin{aligned}
& \frac{V_{0}-10 e^{-t} u(t)}{R}+\frac{1}{L} \int V_{0} d t+\frac{V_{0}}{4}=0 \\
& V_{0}-10 e^{-t} u(t)+\frac{1}{2} \int V_{0} d t+\frac{V_{0}}{4}=0
\end{aligned}
$$

Taking the Laplace Transform

$$
\begin{gathered}
V_{0(s)}-\frac{10}{s+1}+\frac{V_{0}(s)}{2 s}+\frac{i(0-)}{s}+\frac{V_{0}(s)}{4}=0 \\
V_{0(s)}-\frac{10}{s+1}+\frac{V_{0}(s)}{2 s}+\frac{2}{s}+\frac{V_{0}(s)}{4}=0 \\
V_{0(s)}\left(1+\frac{1}{2 s}+\frac{1}{4}\right)=\frac{10}{s+1}-\frac{2}{s} \\
V_{0(s)}\left(\frac{5 s+2}{4 s}\right)=\frac{10 s-2(s+1)}{s(s+1)}
\end{gathered}
$$

$$
\begin{gathered}
V_{0(s) 5}\left(\frac{s+0.4}{4 s}\right)=\frac{8 s-2}{s(s+1)} \\
V_{0(s)}=\frac{4 s(8 s-2)}{5 s(s+1)(s+0.4)} \\
V_{0(s)}=\frac{6.4 s-1.6}{(s+1)(s+0.4)}=\frac{A}{s+1}+\frac{B}{s+0.4}
\end{gathered}
$$

Solving we get

$$
\mathrm{A}=13.33 ; \quad \mathrm{B}=6.93
$$

Substituting we get:

$$
V_{0(s)}=\frac{13.33}{s+1}+\frac{6.93}{s+0.4}
$$

Taking inverse Laplace transform we get:
$\mathrm{V}_{0}(\mathrm{t})=13.33 \mathrm{e}^{-\mathrm{t}}+6.93 \mathrm{e}^{-0.4 \mathrm{t}}$ volts

