Open and Short Circuit Parameters

By
Dr. Ravinder Nath Rajotiya

Finding the Open Circuit Parameters or

Z Parameters $Z_{11}, Z_{12}, Z_{21}, Z_{22}$

- We can find the network parameters by solving the network equations written using the loop or the nodal methods
- The Loop equations can be written as :
$V_{1}=I_{1} Z_{11}+I_{2} Z_{12}+I_{3} Z_{13} \ldots \ldots \ldots \ldots \ldots \ldots . . I_{n} Z_{1 n}$
$V_{2}=I_{1} Z_{21}+I_{2} Z_{22}+I_{3} Z_{23} \ldots \ldots \ldots \ldots \ldots \ldots . . I_{n} Z_{2 n}$
$V_{3}=I_{1} Z_{31}+I_{2} Z_{32}+I_{3} Z_{33} \ldots \ldots \ldots \ldots \ldots \ldots . I_{n} Z_{3 n}$
$V_{n}=I_{1} Z_{n 1}+I_{2} Z_{n 2}+I_{3} Z_{n 3} \ldots \ldots \ldots \ldots \ldots \ldots . . I_{n} Z_{n n}$

Loop Equation

$V_{1}=I_{1} Z_{11}+I_{2} Z_{12}+I_{3} Z_{13} \ldots \ldots \ldots \ldots . \ldots . . . I_{n} Z_{1 n}$
$V_{2}=I_{1} Z_{21}+I_{2} Z_{22}+I_{3} Z_{23} \ldots \ldots \ldots I_{n} Z_{2 n}$
$V_{3}=I_{1} Z_{31}+I_{2} Z_{32}+I_{3} Z_{33} \ldots \ldots \ldots \ldots \ldots \ldots . I_{n} Z_{3 n}$
$V_{n}=I_{1} Z_{n 1}+I_{2} Z_{n 2}+I_{3} Z_{n 3} \ldots \ldots \ldots \ldots \ldots I_{n} Z_{n n}$

In Matrix Form

$$
\begin{aligned}
& \text { [V] = [Z] [I] } \\
& \text { or } V=\Delta Z x \mid \\
& {\left[\begin{array}{c}
V_{1} \\
V_{2} \\
V_{3} \\
- \\
V_{n}
\end{array}\right]=\left[\begin{array}{llll}
Z_{11} & Z_{12} & Z_{13} \ldots . & Z_{1 n} \\
Z_{21} & Z_{22} & Z_{23} \ldots . & Z_{2 n} \\
Z_{31} & Z_{32} & Z_{33} \ldots . & Z_{3 n} \\
\vdots & - & - & \\
Z_{n 1} & \bar{Z}_{n 2} & \bar{Z}_{n 3} \ldots . & Z_{n n} \\
\text { Notes Prepared by Dr. RN Rajotiva }
\end{array}\right]\left[\begin{array}{c}
\mathrm{I}_{1} \\
\mathrm{I}_{2} \\
\mathrm{I}_{3} \\
- \\
\mathrm{I}_{\mathrm{n}}
\end{array}\right]}
\end{aligned}
$$

Finding Z

Then we can find the input impedance as: $Z_{i n}=\Delta Z / \Delta Z_{11}$. We can similarly

Two Port Network

- We can write the equations for the dependent variable in terms of the independent variables

$$
\begin{aligned}
& (\mathrm{V} 1, \mathrm{~V} 2)=\mathrm{f}(\mathrm{I} 1, \mathrm{I} 2) \\
& {[\mathrm{V}]=[\mathrm{Z}][\mathrm{I}]}
\end{aligned}
$$

- For a two-port network

$$
\begin{aligned}
& \mathrm{V}_{1}=\mathrm{Z}_{11} 1_{1}+\mathrm{Z}_{12} \mathrm{I}_{2} \\
& \mathrm{~V}_{2}=\mathrm{Z}_{21} 1_{1}+\mathrm{Z}_{22} \mathrm{I}_{2} \\
& {\left[\begin{array}{l}
V_{1} \\
V_{2}
\end{array}\right]=\left[\begin{array}{ll}
Z_{11} & Z_{12} \\
Z_{21} & Z_{22}
\end{array}\right]\left[\begin{array}{l}
I_{1} \\
I_{2}
\end{array}\right]}
\end{aligned}
$$

Z Parameter

- In order to determine the open circuit impedance or the Z parameter, open the input port and apply the excitation at the output port. Since the input is open $\mathrm{I}_{1}=0$, we then determine the I_{2} and V_{1} to obtain Z_{12} and Z_{22}.
- When $I_{1}=0$, the equation reduces to

$$
\begin{array}{ll}
-V_{1}=Z_{12} I_{2} \text {; so we get } & Z_{12}=V_{1} / I_{2} \\
-V_{2}=Z_{22} I_{2} \text {; so we get } & Z_{22}=V_{2} / I_{2}
\end{array}
$$

- Then open the output port so that $12=0$, and determine the I 1 and V 2 to obtain Z_{11} and Z_{21}. When $\mathrm{I}_{2}=0$, the equation reduces to
- $\mathrm{V}_{1}=\mathrm{Z}_{11} \mathrm{I}_{1}$; so we get $\quad \mathrm{Z}_{11}=\mathrm{V}_{1} / \mathrm{I}_{1}$
- $\mathrm{V}_{2}=\mathrm{Z}_{21} \mathrm{I}_{1}$; so we get $\quad \mathrm{Z}_{21}=\mathrm{V}_{2} / \mathrm{I}_{1}$

Equivalent Circuit of Loop equations

- We know the two loop equations:

$$
\begin{aligned}
& V_{1}=z_{11} I_{1}+Z_{12} I_{2} \\
& v_{2}=z_{21} I_{1}+z_{22} I_{2}
\end{aligned}
$$

- Rewriting these equations remembering that : $\mathrm{Z}_{12} \mathrm{I}_{2}$ and $\mathrm{Z}_{21} \mathrm{I}_{1}$ are current controlled voltage sources (CCVS)

$$
\begin{aligned}
& V_{1}=\left(Z_{11}-Z_{12}\right) I_{1}+Z_{12}\left(I_{1}+I_{2}\right) \\
& V_{2}=\left(Z_{21}-Z_{12}\right) I_{1}+\left(Z_{22}-Z_{12}\right) I_{2}+Z_{12}\left(I_{1}+I_{2}\right)
\end{aligned}
$$

(a) Equivalent Circuit of $\mathrm{V}_{1}=\left(\mathrm{Z}_{11}-\mathrm{Z}_{12}\right) \mathrm{I}_{1}+\mathrm{Z}_{12}\left(\mathrm{I}_{1}+\mathrm{I}_{2}\right)$

(b) Equivalent circuit of $\mathrm{V}_{2}=\left(\mathrm{Z}_{21}-\mathrm{Z}_{12}\right) \mathrm{I}_{1}+\left(\mathrm{Z}_{22}-\mathrm{Z}_{12}\right) \mathrm{I}_{2}+\mathrm{Z}_{12}\left(\mathrm{I}_{1}+\mathrm{I}_{2}\right)$

Short Circuit Admittance (Y)

- The short circuit admittance is found by writing the node equations. These equations help us to write the dependent variables in terms of the independent variable as:
- $(I 1, I 2)=f(V 1, V 2)$

$$
\begin{aligned}
& I_{1}=Y_{11} V_{1}+Y_{12} V_{2} \\
& I_{2}=Y_{21} V_{1}+Y_{22} V_{2}
\end{aligned}
$$

Which can be written in matrix form as:
$[\mathrm{I}]=[\mathrm{Y}][\mathrm{V}]$

$$
\left[\begin{array}{l}
I_{1} \\
I_{2}
\end{array}\right]=\left[\begin{array}{ll}
Y_{11} & Y_{12} \\
Y_{21} & Y_{22}
\end{array}\right]\left[\begin{array}{l}
V_{1} \\
V_{2}
\end{array}\right]
$$

Admittance Parameters

- First we short the output terminal, so $\mathrm{V} 2=0$ substituting we get:

$$
\begin{array}{lll}
I_{1}=Y_{11} V_{1} & \text { or } & Y_{11}=I_{1} / V_{1} \\
I_{2}=Y_{21} V_{1} & \text { or } & Y_{21}=I_{2} / V_{1}
\end{array}
$$

- Then we short circuit the input port , so V1=0
$I_{1}=Y_{12} V_{2}$
or $\quad Y_{12}=I_{1} / V_{2}$
$I_{2}=Y_{22} V_{2}$
or $\quad Y_{22}=I_{2} / V_{2}$

Equivalent Circuit in terms of admittance

The equivalent circuit equations can be written by rearranging the above equation:
$I_{1}=\left(Y_{11}+Y_{12}\right) V_{1}+Y_{12}\left(V_{1}-V_{2}\right)$
$I_{2}=\left(Y_{21}-Y_{12}\right) V_{1}+\left(Y_{22}-Y_{12}\right) V_{2}+Y_{12}\left(V_{2}-V_{1}\right)$

(a) Y Parameter Equivalent Circuit

Star-Delta Transformation

- The use of start-delta and delta-star sometimes helps in simplifying the network.
- Delta-Star Transformation:

Given Z1, Z2, Z3 then

1. Delta star Transformation

- Let $\mathrm{Z} 1, \mathrm{Z2}, \mathrm{Z} 3$ be impedance in delta then

$$
Z_{a}=\frac{Z_{1} Z_{2}}{Z_{1}+Z_{2}+Z_{3}}
$$

$$
Z_{b}=\frac{Z_{2} Z_{3}}{Z_{1}+Z_{2}+Z_{3}} \quad Z_{c}=\frac{Z_{3} Z_{1}}{Z_{1}+Z_{2}+Z_{3}}
$$

-Star-Delta Transformation

- Let $\mathrm{Za}, \mathrm{Zb}, \mathrm{Zc}$ be the impedances in star network then the impedance of delta network will be:

$$
\begin{aligned}
& \text { rk will be: } Z_{1}=\frac{Z_{a} Z_{b}+Z_{b} Z_{c}+Z_{c} Z_{a}}{Z_{b}} \\
& Z_{2}=\frac{Z_{a} Z_{b}+Z_{b} Z_{c}+Z_{c} Z_{a}}{Z_{c}} \quad Z_{3}=\frac{Z_{a} Z_{b}+Z_{b} Z_{c}+Z_{c} Z_{a}}{Z_{a}}
\end{aligned}
$$

Ex. Determine the Y parameter of the following network

- Ans:
- We know the Y -parameter equations :
- $\mathrm{I}_{1}=\mathrm{Y}_{11} \mathrm{~V}_{1}+\mathrm{Y}_{12} \mathrm{~V}_{2}$
- $I_{2}=Y_{21} V_{1}+Y_{22} V_{2}$
- Let us first transform the delta connection at the top to star

$$
\begin{array}{r}
Z_{a}=\frac{1 x 1}{1+1+1}=\frac{1}{3} \\
Z_{b}=\frac{1 x 1}{1+1+1}=\frac{1}{3} \\
Z_{c}=\frac{1 x 1}{1+1+1}=\frac{1}{3}
\end{array}
$$

So, the simplified network becomes:

Shorting the output port, V2=0
Therefore
$\mathrm{V}_{1}-1 / 3 \mathrm{I}_{1}-4 / 3\left(\mathrm{I}_{1}+\mathrm{I}_{2}\right)=0 \rightarrow \mathrm{~V} 1-5 / 3 \mathrm{I}_{1}-4 / 3 \mathrm{I}_{2}=0$
and $\quad-1 / 3 I_{2}-4 / 3\left(I_{2}-I_{1}\right)=0 \quad \rightarrow-5 / 3 I_{2}-4 / 3 I_{1}=0$
solving we get $I_{2}=-4 / 5 I_{1} \quad$ and $I_{1}=-5 / 4 I_{2}$.
Substituting 12 from eqn (2) in eqn (1) we get
$V_{1}-5 / 3 I_{1}-4 / 3\left(-4 / 5 I_{1}\right)=0$
Or $\quad V_{1}=9 / 15 I_{1}$
Therefore $Y_{11}=I_{1} / V_{1}=15 / 9$
$\mathrm{Y}_{11}=5 / 3 \mathrm{mho}$
(4)
and also $\mathrm{V}_{1}=9 / 15 \times(-5 / 412)$
So $\quad V_{1}=3 / 4 I_{2}$
$Y_{21}=I_{2} / V_{1}=4 / 3 \mathrm{mho}$
(Ignoring direction)
(5)

- (ii) Now short circuiting at the input port, V1=0
- Applying KVL again
- $\mathrm{V} 2-1 / 312-4 / 3(12+\mathrm{I})=0 \rightarrow \mathrm{~V} 2-5 / 312-4 / 3 \mathrm{I} 1=0 \quad-(6)$
- and $-1 / 3|1-4 / 3(|1+| 2)=0 \quad \rightarrow-5 / 3| 1-4 / 3 \mid 2=0$ or
- $11=-4 / 5 \mid 2 \quad$ and $I 2=-5 / 4 I 1$
(7)
- Substituting 11 in eqn (6) we get
- $\mathrm{V} 2-5 / 312-4 / 3(-4 / 512)=0$ (8)
- so, $Y_{22}=I_{2} / V_{2} 15 / 9$
- Or $\mathrm{Y}_{22}=5 / 3 \mathrm{mho}$
- From (7) and (8) $\mathrm{V}_{2}=9 / 15 \times\left(5 / 4 \mathrm{I}_{1}\right) \quad=3 / 4 I_{1}$
- So $V_{2}=3 / 4 I_{1}$
- $Y_{12}=I_{1} / V_{2}=4 / 3 \mathrm{mho}$

Que $A \quad \pi$ network has been shown in figure below, when $0.5 I_{3}$ is the controlled current source. Obtain the z-parameters for this circuit

Sol. \Rightarrow With of open circuit at port 2-2,,$I_{2}=0$ Potential at node $\dot{c}^{-}-c t=V$.

$$
\begin{aligned}
& I_{1}=I_{3}+0.5 I_{3}- \\
&=1,5 I_{3} \\
& \text { But } \\
& I_{3}=\frac{V_{c-t}}{R}=\frac{V_{1}}{8+5}=\frac{V_{1}}{13} \\
& \therefore I_{1}=\frac{1,5 \times V_{1}}{13} \mathrm{Amp}
\end{aligned}
$$

Also $V_{\text {eff }}=V_{2}=I_{3} \times 5=\frac{V_{1}}{13} \times 5=\frac{5 V_{1}}{13}$
$\therefore \quad V_{2}=\frac{5 V_{1}}{13} \quad Z_{21}=\frac{V_{2}}{I_{1}}=\frac{5 V_{1} \times 13}{13 \times 15 V_{1}}=3.33 \Omega$
Therefore $z_{11}=\frac{V_{1}}{I_{1}}=\frac{V_{1}}{\frac{1.5 V_{1}}{13}}, \quad O R \quad z_{11}=\frac{13}{1.5}=8.67 \Omega$
\Rightarrow Now open the input port so that $I_{1}=0$ As seen

$$
\begin{aligned}
& I_{2}=I_{3}+0.5 I_{3}= \\
& I_{2}=1.5 I_{3}
\end{aligned}
$$

Loop-1 $5 I_{3}-8 \times 0.5 I_{3}=V_{\text {cd }} \quad$ but $V_{c d} \equiv V_{d}$
$\therefore \quad V_{1}=5 I_{3}-4 I_{3}$

$$
V_{1}=I_{3}
$$

$\begin{aligned} \therefore \pi_{22} & =V_{2} / I_{2}\end{aligned}=\frac{5 I_{3}}{1.5 I_{/ 3}}$
and $5 I_{3} \equiv V_{2}$

$$
\text { and } 5 I_{3} \equiv V_{2}
$$

Questions

1. For the following network:
(a) Find the pen circuit impedance and draw the equivalent circuit
(b) Find the short circuit admittance and draw the equivalent circuit

2. For the following network, Determine the Z parameter

