Inter-relationship between the two-port Parameters Network Analysis by Ravinder Nath Rajotiya - April 2, 2020April 5, 20200 Share on Facebook Share Send email Mail Print Print Table of Contents Toggle Inter-relationship between the two-port ParametersZ parameter in terms of Y parametersZ parameters in terms of Transmission parameterZ parameters in terms of hybrid parameterSummary of Z parameters in terms of other parametersY parameters in terms of other parametersTransmission Parameters in terms of other ParametersHybrid parameters in terms of other parametersEx-1: Transformation of ParametersExercise: Inter-relationship between the two-port Parameters The following steps of operations can be used for the transformation one set of parameters in terms of other set of parameters: Step 1. Write the standard equations for both sets. Step 2. Solve or rearrange the second set of equations and writing them in terms of the independent variables of 1st set of equations. Step 3. Compare the equations obtained in step 2 with those of the first set to obtain the required parameters. Z parameter in terms of Y parameters Step-1: Writing Z and Y parameter equations Z parameter equation Y parameter equation V1= Z11I1 + Z12I2 V2= Z21I1 + Z22I2 I1= Y11V1 + Y12V2 I2= Y21V1 + Y22V2 Step-2: Solve or rearrange the second set of equations and writing them in terms of the independent variables of 1st set of equations. I1= Y11V1 + Y12V2 ——-1 I2= Y21V1 + Y22V2 ——-2 Balancing equation (1) and (2) so as to omit V2, so we multiply (1) by Y22 and (2) by Y12 and subtract Y22xI1= Y22xY11V1 + Y22xY12V2 ———-(3) Y12xI2= Y12xY21V1 + Y12xY22V2 ———-(4) Subtracting (4) from (3) we get Y22xI1 – Y12xI2= Y22xY11V1 + Y22xY12V2 – ( Y12xY21V1 + Y12xY22V2 ) and rearranging we get: Y22xY11V1 – Y12xY21V1 = Y22xI1 – Y12xI2 V1(Y22xY11 – Y12xY21) = Y22xI1 – Y12xI2 OR ∆yV1 = Y22xI1 – Y12xI2 OR V1 = (Y22 /∆y )I1 – (Y12/∆y )I2 ——–(5) Now balancing the eqn (1) and (2) in terms of V1 by multiplying (1) by Y21 and (2) by Y11 and subtracting Y21xI1= Y21xY11V1 + Y21xY12V2 ———-(6) Y11xI2= Y11xY21V1 + Y11xY22V2 ———-(7) Y21xI1 – Y11xI2= Y21xY11V1 + Y21xY12V2 – Y11xY21V1 – Y11xY22V2 and rearranging we get: Y21xY12V2 – Y11xY22V2 = Y21xI1 – Y11xI2 V2(Y21xY12 – Y11xY22) = Y21xI1 – Y11xI2 OR -∆yV1 = Y21xI1 – Y11xI2 OR V2 = -(Y21 /∆y )I1 + (Y11/∆y )I2 ——–(8) Step-3: Rewriting eqn (5) and eqn(8) V1 = (Y22 /∆y )I1 – (Y12/∆y )I2 V2 = -(Y21 /∆y )I1 + (Y11/∆y )I2 Comparing these equations with the general Z parameter equation we find that: Z11 = Y22 /∆y Z12 = – Y12/∆y Z21 = -Y21 /∆y Z22 = Y11/∆y Z parameters in terms of Transmission parameter Step-1 Z parameter equation ABCD parameter Eqn V1= Z11I1 + Z12I2 V2= Z21I1 + Z22I2 V1= AV2 – BI2 I1= CV2 – DI2 Step-2: Solve or rearrange the second set of equations and writing them in terms of the independent variables of 1st set of equations. I1= CV2 – DI2 V2 = (1/C)I1 + (D/C)I2 Substituting this value in eqn(1) of ABCD parameter V1 = A{(1/C)I1 + (D/C)I2} – BI2 V1 = (A/C) I1 + {(AD – BC)/C} I2 Step-3: V1 = (A/C) I1 + {(AD – BC)/C} I2 V2 = (1/C)I1 + (D/C)I2 so, the Z parameter equation in terms of Transmission (ABCD) parameters: Z11 = A/C Z12 = {(AD – BC)/C Z21 = 1/C Z22 = D/C Z parameters in terms of hybrid parameter Step-1 Z parameter equations h parameter equations V1= Z11I1 + Z12I2 V2= Z21I1 + Z22I2 V1= h11I1 + h12V2 I2 = h21I1 + h22V2 Step-2 : Solve or rearrange the second set of equations and writing them in terms of the independent variables of 1st set of equations. From eqn-2 of h parameter I2 = h21I1 + h22V2 V2 = – (h21/ h22)I1 + (1/ h22)I2 Substituting this in eqn(1) of h parameter V1= h11I1 + {h12 (- (h21/ h22)I1 + (1/ h22) I2} V1= {h11 h22 – h12h21) / h22}I1 + h12/ h22)I2 = V1=(∆h / h22)I1 + (h12/ h22)I2 Step-3: Rewriting V1 = (∆h / h22)I1 + (h12/ h22)I2 V2 = – (h21/ h22)I1 + (1/ h22)I2 so, we get the Z parameter equation in terms of h parameters as : Z11 = ∆h / h22 Z12 = h12/ h22 Z21 = – h21/ h22 Z22 = 1/ h22 Summary of Z parameters in terms of other parameters Y parameters in terms of other parameters Transmission Parameters in terms of other Parameters Hybrid parameters in terms of other parameters Ex-1: Transformation of Parameters Exercise: If the Y parameter of a two-port network is given as: Y11 = 0.3 ohm; Y12 = Y21 = – 0.1 ohm and Y22 = 0.2 ohm. Determine the Z, transmission and hybrid parameters. Share on Facebook Share Send email Mail Print Print