Open Circuit and Short Circuit impedance and Image Impedance Network Analysis by Ravinder Nath Rajotiya - April 8, 2020June 4, 20200 Share on Facebook Share Send email Mail Print Print Table of Contents Toggle Open circuit and Short circuit impedance of a two-port network in terms of ABCD parametersApplying Open circuit at port-2; I2=0 we getSummery, the ABCD parameters in terms of open and short circuit impedance: Open circuit and Short circuit impedance of a two-port network in terms of ABCD parameters From the generalized ABCD parameter equation V1=AV2 – BI2 I1=CV2 – DI2 Applying Open circuit at port-2; I2=0 we get V1= AV2; I1= CV2 Z1O = V1/I1= A/C ——————————(i) Applying the short circuit at port-2; V2=0, we get V1= – BI2 I1=-DI2 Or Z1S = V1/I1 = B/D ————————–(ii) Now looking from port and applying: Open circuit port-1, I1=0 0 = CV2 – DI2 CV2= DI2 Z2O = V2/I2 = D/C ————————–(iii) Now short circuiting the port-1, V1=0, we get 0 = AV2 – BI2 AV2 = BI2 Z2s = V2/I2 = B/A —————————(iv) Ratio of open circuit to short circuit ratio Z1O/ Z1S = (B/D)(C/A) ————————–(v) To find ABCD parameters Z2O – Z2S = D/C – B/A = (AD –BC)/CA But for the two network to be reciprocal, the condition is AD-BC =1 Therefore: Z2O – Z2S = 1/CA ———-(vi) CA = 1/ (Z2O – Z2S ) From eqn(i) Z1O = A/C Multiplying eqn(i) and eqn(v) CA(A/C) = 1/ (Z2O – Z2S )* Z1O A2 = Z1O / (Z2O – Z2S ) Or A= √( Z1O / (Z2O – Z2S ) ——————–(vii) From eqn(i) i.e. Z1O = A/C C = A/ Z1O Therefore from eqn (vii): C = √( Z1O / (Z2O – Z2S ) /Z1O C = √( 1/ Z1O (Z2O – Z2S ) ———–(viii) From short circuit equations (iv) Z2s = B/A B = AZ2s = √( Z1O / (Z2O – Z2S )* Z2s From short circuit equations (ii) Z1s = B/D D = B/ Z1s = √( Z1O / (Z2O – Z2S )* Z2s/ Z1s = A* Z2s/ Z1s ——————————–(ix) = Z20*√( 1/ Z1O (Z2O – Z2S )——————(x) Summery, the ABCD parameters in terms of open and short circuit impedance: A = A= √( Z1O / (Z2O – Z2S ) B = AZ2s = √( Z1O / (Z2O – Z2S )* Z2s C = √( 1/ Z1O (Z2O – Z2S ) D = A* Z2s/ Z1s = Z20*√( 1/ Z1O (Z2O – Z2S ) Image Impedance in terms of ABCD parameters In a two-port network, if the impedance at input port with output port impedance as Zi2 is Zi1 and simultaneously, the output impedance with input impedance being Zi1 is Zi2, then the impedances Zi1 and Zi2 are called as the image impedances. Let us again write the general ABCD parameter equations V1= AV2 – BI2 I1= CV2 – DI2 V1/I1 = (AV2-BI2) / (CV2 – DI2) But V2/(-I2) = Zi2 or V2 = -Zi2I2 —–(i) Therefore: Zi1 = V1/I1 = (-AZi2 – BI2) / (-Zi2C – DI2) Or Zi1 = (-AZi2 – B) / (-Zi2C – D) —————– (ii) Looking inwards from port-1 Zi1 = V1/I1 Zi2 = V2/(-I2) Looking inwrds from port-2 Zi1 = V1/(-I1) Zi2 = V2/I2 Now the general equations: V1 = AV2 – BI2 and I1= CV2 – DI2 AV2 = V1 + BI2 and CV2 = I1 + DI2 Rewriting by balancing, and adding AV2 = -Zi1I1 + BI2 Zi1CV2 = Zi1I1 + Zi1DI2 ———————————————– V2(A+Zi1C) = (B + Zi1D)I2 Or Zi2 = V2/I2 = (B + Zi1D) / (A+Zi1C) ————-(iii) Substituting the value of Zi2 from eqn(iii) in eqn(ii) and simplifying we get Zi1 = (-A((B + Zi1D) / (A+Zi1C)) – B) / (-((B + Zi1D) / (A+Zi1C))C – D) —————– (ii) or CDZi12 = AB Zi1 = √((AB) / (CD) ————————————(iv) Similarily we can substitute Zi1 from eqn(ii) in eqn (iii) for Zi2 and get Zi2 = √(BD)/ (AC) ————————————(v) Image Transfer Parameters Again looking at the general equation of ABCD parameter I2 = – V2/Zi2 V1= AV2 – BI2 I1= CV2 – DI2 V1 = AV2 + BV2/Zi2 = (A + B/Zi2) V2 V1/V2 = ( A + B√(AC/BD) because Zi2 = √(BD)/ (AC) = ( A + √(ACBBD/BDD) = ( A + √(ABCD)/D ) ———————————(vi) Also Converting I1 equation only in terms of I2 I1 = CV2 – DI2 = -Zi2CI2 – DI2 = -(-(√(BD)/ (AC) )C + D)I2 = – (D + √(ABCCD)/ (AAC)I2 = – (D + √(ABCD)/ A)I2 -I1/I2 = (D + √(ABCD)/ A) ——————————–(vii) Multiplying eqn vi and eqn vii, to get -V1/V2*I1/I2 = (AD + √ABCD)2 / AD2 = (√(AD) + √(BC))2 √((-V1/V2)* (I1/I2) = √(AD) + √(BC) from reciprocity condition AD – BC = 1 or BC = AD-1 √((-V1/V2)* (I1/I2) = √(AD) + √(AD – 1) Now √(AD) = coshθ θ = cosh-1√(AD) √(BC) = √(AD – 1)=sinh θ cosh θ + sinhθ = eθ = √((-V1/V2)* (I1/I2) taking antilog θ = log √((-V1/V2)* (I1/I2) = log(√((-Z0I1/Z0I2)* (I1/I2) = log (I1/I2) Share on Facebook Share Send email Mail Print Print