Arithmatic Algorithms

Binary Multiplication

Binary multiplication is is explained using two approaches

  1. Using the simple binary multiplication
  2. Using the Binary 2’s complement Booth’s Multiplication Algorithm

first we explain using the first approach

Simple binary multiplication

Fig: Binary multiplication Algo

Example-1: Multiply 22 and 21 using binary multiplication algorithm explain figure above 

Multiplicand Register B = 22 = 10110

Multiplier Register Q = 21= 10101

Step Qn Operation Carry (E) Acc (A) Multiplier (Q) Count
initialize x x 0 00000 10101 5
1, 1, A=A+B 00000

10110

——— 10110

Shr EAQ 0 01011 01010 4
2 0 Shr EAQ 0 00101 10101 3
3 1 Add 0 00101

10110

——–

11011

Shr EAQ 0 01101 11010 2
4 0 Shr EAQ 0 00110 11101 1
5 1 Add 0 00110

10110

——–

11100

Shr EAQ 0 01110 01110 0
ANSWER 22 x 21 = 462 = 00111001110

Example-2 : Multiply 30 and 26 using Binary Multiplication Algorithm

Multiplicand Register B = 30 = 11110

Multiplier Register Q = 26= 11010

Step Qn Operation Carry (E) Acc (A) Multiplier (Q) Count
initialize x x 0 00000 11010 5
1, 0 Shr EAQ 0 00000 01101 4
2 1 Add A, B 0 00000

11110

——–

11110

Shr EAQ 0 01111 00110 3
3 0 Shr EAQ 0 00111 10011 2
4 1 Add 1 00111

11110

——–

00101

10011
Shr EAQ 0 10010 11001 1
5 1 Add 1 10010

11110

———

10000

0 Shr EAQ 0 11000 01100 0
ANSWER 30×26 = 780 = 01100001100

2’sComplement Multiplication Booth’s Algorithm

Example multiply -12 x -20 using Booth’s Algorithm

Let

multiplicand = -20 ; Reg B(- 20) =101100

2’s Complement B’+1 = (+20) = 010100

Multipler Reg Q = -12 = 10100

-20 x -12 = 240

Fig: Booth’s Algo for 2’s compliment multiplication

Booth’s Algorith Step Qn Qn+1 Operation Acc Q = -12 Qn+1 Count
initialize 0 Initialize Acc, Q, B, Qn+1 000000 10100 0(initial value) 5
1 0 0 Arithmetic shift right (AQQn+1) 000000 01010 0 4
2 0 0 Arithmetic shift right (AQQn+1) 000000 00101 0 3
3 1 0 A-B=A+B’+1 000000

010100

———-

010100

Arithmetic shift right (AQQn+1) 001010 00010 1 2
4 0 1 A+B 001010

101100

———-

110110

Arithmetic shift right (AQQn+1) 111011 00001 0 1
5 1 0 A-B 111011

010100

———-

001111

Arithmetic shift right (AQQn+1) 000111 10000 1 0 stop
ANSWER -20 x -12 = +240 = 00011110000

Binary Division Algorithm

Figure- Binary Division algorithm

Example:

Leave a Reply

Top
error: Content is protected !!