Binary Counter Design STLD/Digital Electronics by Ravinder Nath Rajotiya - September 11, 2019September 12, 20190 Share on Facebook Share Send email Mail Print Print Sequential-Synchronous Counter Design The different steps for the design of the synchronous sequential counter circuits are: i) State diagram ii) state table and excitation table iii) Simplification using K-Map iv) Logic Design Number of Flip-Flops required for implementing a counter: For N-bit counter, N flip-flops would be required For counter counting upto N states, the number of flip-flops required would be : No._of_FFs = Log2 N = Log2 2n Let us now start with the design problems. Example-1: Design a 4-bit synchronous up counter using T flip-flops Step-2: The Excitation Table State Excitation PS NS T1 T2 T3 T4 0000 0001 0 0 0 1 0001 0010 0 0 1 1 0010 0011 0 0 0 1 0011 0100 0 1 1 1 0100 0101 0 0 0 1 0101 0110 0 0 1 1 0110 0111 0 0 0 1 0111 1000 1 1 1 1 1000 1001 0 0 0 1 1001 1010 0 0 1 1 1010 1011 0 0 0 1 1011 1100 0 1 1 1 1100 1101 0 0 0 1 1101 1110 0 0 1 1 1110 1111 0 0 0 1 1111 0000 1 1 1 1 Step-3: Logic Equations for Inputs T1 = Q1’Q2Q3Q4 + Q1Q2Q3Q4 T2 = Q1’Q2’Q3Q4 + Q1’Q2Q3Q4 + Q1Q2Q3Q4 + Q1Q2’Q3Q4 T3 = Q1’Q2’Q3’Q4 +Q1’Q2’Q3Q4 + Q1’Q2 Q3’Q4 + Q1’Q2Q3Q4 + Q1Q2Q3’Q4 + Q1Q2Q3Q4 + Q1Q2’Q3’Q4 +Q1Q2’Q3Q4 T4 = 1 (All min-terms have high value) Step-4: Simplification of above Boolean Equations Figure-2: Solution of Boolean Equations Step-4: The Logic Diagram of a 4-bit Binary Counter Figure-3: Logic Diagram of a 4-bit Binary Counter Example:Design a 3-bit Binary up/Down Counter using ‘T’ Flip-Flops A 3-bit counter would require 3 flip-flops. A switch input ‘x’ is required to set the counter in incrementing or in decrementing mode. When x=0, the counter counts UP, if x=’1’, the counter counts DOWN. Step-1: State diagram Figure-1: State Diagram of 3-bit Up/Down Synchronous Counter Step-2: Construct the truth table from the state diagram State Excitation Control Input (x) PS Q1Q2Q3 NS Q1Q2Q3 T1 T2 T3 0 000 001 0 0 1 0 001 010 0 1 1 0 010 011 0 0 1 0 011 100 1 1 1 0 100 101 0 0 1 0 101 110 0 1 1 0 110 111 0 0 1 0 111 000 1 1 1 1 000 111 1 1 1 1 001 000 0 0 1 1 010 001 0 1 1 1 011 010 0 0 1 1 100 011 1 1 1 1 101 100 0 0 1 1 110 101 0 1 1 1 111 110 0 0 1 Step-3: Write the SOP equations T1 = x’Q1’Q2Q3 + x’Q1Q2Q3 + xQ1’Q2’Q3’ + xQ1Q2’Q3’ T2 = x’Q1’Q2’Q3 + x’Q1’Q2Q3 + x’Q1Q2’Q3 + x’Q1Q2Q3 + x Q1’Q2’Q3’ + xQ1’Q2Q3’ + xQ1Q2’Q3’ + xQ1Q2Q3’ T3 = 1 Step-4: Simplify the SOP Equations Figure-2: K-Map solution for T1, T2, T3 inputs Step-5: Draw the logic Diagram Figure-3: A 3-bit Binary Up-Down Counter Circuit Figure -Logic Circuit Exercise: Design a two bit binary counter such that when a push switch is closed the count decrements else the count remain unchanged. Share on Facebook Share Send email Mail Print Print